PREVENTIVE CONSERVATION FOR MARBLE-CLAD BUILDINGS AND MARBLE SCULPTURES

Ulf Lindborg *

Introduction

Marble is an attractive material used as aesthetically pleasing facade cladding on old and modern prestige buildings and as a preferred material for sculpture. However, outdoors, marble is more sensitive to weathering than many other stone materials and marble cladding on buildings often suffers damage in that the panels start to bow permanently in-situ on the building walls, and after few years a disastrous situation may develop. Recent research in the EU-project HERMES and elsewhere has shed new light on the deterioration process which appears to be quite different from the deterioration of other stone materials. Damage in marble is not caused mainly by air pollution but rather by temperature and humidity fluctuations which cause a fatigue-type failure in the grain boundaries of the marble. Rainfall directly onto the marble tends to accelerate the damage. Certain marbles are more prone to deterioration than other marbles, probably as a consequence of their internal microstructure and their pore structure on a nanometer scale.

The following rules are suggested to maintain marble objects in the best possible condition:

A. Reduction of moisture

A conclusion from HERMES is that moisture is necessary in practice for the damage processes for marble. If moisture is reduced, the chances for survival of the material are drastically improved. There are different possibilities to reduce the presence of water in the marble:

1. Move the object indoors if this is feasible.
2. Shelter the object with a roof or baldakine from the direct impact of rain. Small roofs over sculptures were often incorporated in the architectural design of buildings and monuments already in ancient times. Today we may look upon these roofs as purely aesthetic but they are probably there mainly for technical reasons — rain protection.
3. Make sure by suitable drainage of the surrounding ground and by proper building maintenance (cleaning of gutters, etc.) that water cannot migrate and reach the object from below or behind. In humid locations, for instance on the north side on a building, removal of nearby trees may be necessary to allow the object to dry up sufficiently. This will also reduce algae.
4. Consolidate the marble and treat the marble surface regularly with wax or some other surface active compound. This will keep the surface hydrophobic.

B. Reduction of thermal variations

Variations in temperature tend to cause internal disintegration of marble, particularly under moist conditions. The following measures will reduce temperature variations:

1. Avoid direct sun exposure especially in direct south or southwest directions. The sun will cause high peak temperatures during the day. The daily temperature differences as well as the annual differences are much higher for surfaces exposed to the sun during daytime than for surfaces always away from the sun. Some shadow is believed to be beneficial in most cases to avoid the highest temperature peaks in the summer. Marble panels are usually more damaged on south and southwest facades than on facades facing other directions and also sculptures with these locations are likely to be more vulnerable to damage unless at least partly shaded. There is a balance between the beneficial effect of the sun in drying up the material and the detrimental effect in causing large thermal stresses, but in direct south and southwest directions it seems that the detrimental effect of sunshine dominates.
2. Construct a wooden shed around the marble sculpture in the wintertime. This will protect from sunshine in the early spring when most outdoor stone objects are saturated with moisture and particularly vulnerable to thermal stress. It is desirable, of course that the shed is built in such a way as to allow free air circulation to assist the drying of the object during dry weather.

C. Choice of marble material

Marbles have different sensitivity to weathering. There is a need for a quick and reliable screening test to assess various marbles being considered for use in important buildings and monuments. No such test exists yet and for the time being the following suggestions may be made from the experiments and the proposed model in HERMES:

1. Use a dolomitic marble rather than a calcitic marble.
2. If a calcitic marble needs to be used, the microstructure, the porosity distribution and the tendency for swelling in water should be carefully evaluated.

D. Hydrophobizing and consolidation. Monitoring for renewed treatment

A primary aim for any remediation treatment is to keep water